Submit Manuscript  

Article Details


Effects of Biphenyl Sulfonylamino Methyl Bisphosphonic Acids on Porphyromonas Gingivalis and Cytokine Secretion by Oral Epithelial Cells

[ Vol. 9 , Issue. 6 ]

Author(s):

Lei Zhao, Annie Marquis, Vu Dang La, Mariangela Agamennone, Fulvio Loiodice, Paolo Tortorella and Daniel Grenier   Pages 855 - 860 ( 6 )

Abstract:


Bisphosphonate drugs are well known to inhibit osteoclastic activity and have been proposed for the management of bone diseases, including periodontitis which is associated with alveolar bone destruction. In this study, we evaluated the effects of four arylsulfonamide bisphosphonates on growth of the periodontopathogenic bacterium Porphyromonas gingivalis as well as their capacity to reduce cytokine secretion by lipopolysaccharide (LPS)-stimulated oral epithelial cells. The growth of P. gingivalis was inhibited by (4’-Chloro-biphenyl-4-sulfonylamino)methyl-1,1- bisphosphonic acid while the three other arylsulfonamide bisphosphonates ((4-Methoxy-phenylsulfonylamino)methyl-1,1- bisphosphonic acid, (4-Nitro-phenylsulfonylamino)methyl-1,1-bisphosphonic acid, and (Biphenyl-4-sulfonylamino) methyl-1,1-bisphosphonic acid) had no effect. Growth inhibition was more pronounced under an iron-restricted condition. All four arylsulfonamide bisphosphonates decreased the production of the pro-inflammatory cytokines IL-6 and IL-8 by Aggregatibacter actinomycetemcomitans LPS-stimulated oral epithelial cells. In conclusion, we uncovered additional properties of bisphosphonates that may be beneficial for the treatment of periodontal diseases. In particular, (4’-Chlorobiphenyl- 4-sulfonylamino)methyl-1,1-bisphosphonic acid combines the already disclosed antiresoptive activity with antiinflammatory and antibacterial properties

Keywords:

Bisphosphonate, periodontal disease, antibacterial, anti-inflammatory.

Affiliation:

Groupe de Recherche en Ecologie Buccale, Faculte de Medecine Dentaire, Universite Laval, 2420 Rue de la Terrasse, Quebec City, QC, Canada, G1V 0A6, Canada.



Read Full-Text article