Submit Manuscript  

Article Details


DNA Hybridization on Chitosan-Functionalized Silicon Substrate

[ Vol. 12 , Issue. 5 ]

Author(s):

Amina Omar, El-Sayed M. El-Sayed, Mona S. Talaat and Medhat Ibrahim   Pages 464 - 471 ( 8 )

Abstract:


The ability of DNA to capture oligonucleotide molecules in solution is of great importance in genetics, medical diagnostics, and drug discovery. The DNA hybridization event in which the probe, which is usually a single-stranded DNA (ssDNA) covalently immobilized on a functionalized surface, recognizes the complementary target and forms a stable duplex structure that is the basis of highly specific bio recognizing devices.

In this computational study, molecular modeling and Quantitative Structure Activity Relationship (QSAR) calculations were utilized at PM3 level in order to evaluate the interaction of aldehyde ssDNA on chitosan-functionalized silicon substrate and the biological activity of the proposed compounds. Molecular modeling of ssDNA 5’-(TTCA) attached on chitosan- functionalized silicon dioxide substrate was carried out. Molecular modeling and QSAR calculations were utilized at MM3 level in order to evaluate the interaction of target DNA on DNA probe on chitosan-functionalized silicon substrate through hydrogen bonding and the biological activity of the proposed compounds.

Keywords:

DNA, PM3, QSAR, SiO2, hybridization and chitosan.

Affiliation:

Spectroscopy Department, National Research Center, 33 El-Bohouth St. 12622 Dokki, Giza, Egypt



Read Full-Text article