Submit Manuscript  

Article Details

Pharmacophoric Modeling and Atom-Based 3D-QSAR of Novel 1-Aryl-3-(1-acylpiperidin-4-yl) Urea as Human Soluble Epoxide Hydrolase Inhibitors (sEHIs)

[ Vol. 7 , Issue. 6 ]


Nirupam Das, Meenakshi Dhanawat, Akanksha Kulshrestha and Sushant K. Shrivastava   Pages 581 - 592 ( 12 )


Soluble Epoxide Hydrolase (sEH) is an important and promising new pharmacologic target for the treatment of acute systemic inflammation. Inhibition of sEH by a highly selective and potent sEH inhibitor (sEHI) elevates the epoxyeicosatrienoic acids (EETs) level in vivo leading to decreased inflammation. To explore the necessary structural requirement of 1, 3-disubstituted ureas as sEH inhibitors for anti-inflammatory activity, the molecular modeling studies have been pursued. A ligand-based pharmacophoric model and atom-based 3D-QSAR have been generated by Phase. Binding interaction as determined by the docking study revealed that these inhibitors interact at active site (ASP 335 & TYR 383) of sEH enzyme. The pharmacophore model was further used as a 3D query for virtual screening to retrieve potential inhibitors.


Pharmacophore, virtual screening, phase, epoxide hydrolase, docking, inflammation, Soluble Epoxide Hydrolase (sEH), pharmacologic target, epoxyeicosatrienoic acids (EETs), anti-inflammatory activity


Department of Pharmaceutics, Institute of Technology, Banaras Hindu University,Varanasi- 221 005, India.

Read Full-Text article